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In this paper we provide the details for the sketched construction of the real
numbers appearing in [St]. We reproduce [St] here for ease of access and then
proceed with the details that include a correction to the last paragraph of [St].

——————————————————————————————————

An Efficient Construction of Real Numbers

Ross Street

The ordered field R of real numbers can be constructed directly from the ring
Z of integers without first manufacturing the field Q of rationals and without
(explicitly) using Cauchy sequences or Dedekind cuts. This idea has avoided
the wide publicity it deserves. I believed the original discoverer to be Steve
Schanuel (SUNY, Buffalo, New York) who explained it to me while he was vis-
iting Macquarie University last year. Peter Johnstone has recently told me that
the construction was also proposed by Richard Lewis (Sussex, England). Does
anyone know of any other independent discoverers?

By way of motivation notice that a real number α determines a function
f : Z → Z given by f(n) = [αn], where square brackets denote “integer part”.

Then f(10r)
10r

approximates α to r decimal places. In fact f(n)
n

→ α as n → ∞.
if α is an integer then f preserves addition; otherwise it almost does in that
|f(m + n) − f(m) − f(n)| ≤ 3.

Now to the construction. A function u : X → Z is called bounded when
its image is finite; that is, when there exists k ∈ Z such that |u(x)| ≤ k for
all x ∈ X. The set ZX of functions from X to Z is an abelian group under
pointwise addition (f + g)(x) = f(x) + g(x). For X an abelian group, define
f ∈ ZX to be a quasi-homomorphism when f(x + y) − f(x) − f(y) is bounded
as a function of (x, y) ∈ X × X. The quasi-homomorphisms form a subgroup
qh(X,Z) of ZX , and, the bounded functions form a subgroup of qh(X,Z).

The abelian group R is defined to be qh(Z,Z) modulo the bounded functions.

Before proceeding to the multiplicative structure take f ∈ qh(Z,Z) and
suppose |f(m + n)− f(m)− f(n)| ≤ k for all m,n ∈ Z. It is easy to deduce the
inequality

|f(mn) − mf(n)| ≤ (|m| + 1)k
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and hence the inequality

|nf(m) − mf(n)| ≤ (|m| + |n| + 2)k (1)

[If we allow ourselves to know about rationals this implies ( f(n)
n

) is a Cauchy
sequence in Q.]

It is easy to see that qh(Z,Z) is closed under composition of functions
(f ◦ g)(n) = f(g(n)). This gives a multiplication on qh(Z,Z) which almost
makes it into a ring; all that fails is that f ◦ (g + h) and f ◦ g + f ◦ h are not
necessarily equal. However, by taking m = g(n) in (1), we obtain an inequality

|n(f ◦ g)(n) − g(n)f(n)| ≤ (|n| + 1)k′.

and hence an inequality

|(f ◦ g)(n) − (g ◦ f)(n)| ≤ k′′.

This shows that the multiplication of qh(Z,Z) is almost commutative so that
the failing distributive law is almost true as a consequence of the distributive
law on the other side.

This proves that composition in qh(Z,Z) induces a multiplication on R which
makes R a commutative ring.

To see that R is a field take a quasi-homomorphism f which represents a
non-zero element of α of R. Then f is not bounded above (or below). Let f̄(n)
be the first integer m such that f(m) ≥ n. Then f(f̄(n)) ≥ n > f(f̄(n) − 1) ≥
f(f̄(n)) + f(1) − k. So the difference between f ◦ f̄ and the identity function
is bounded. It is easy to see that f̄ is a quasi-homomorphism and so represents
an inverse for α.

Call α ∈ R positive when it is represented by a quasi-homomorphism f such
that f(n) ≥ 0 for all n ≥ 0. Define α ≤ β in R when β − α is positive. This
makes R an ordered field.

To see that R is order complete, take a non-empty set S of positive elements
of R. For each s ∈ S, let fs ∈ qh(Z,Z) represent s and have fs(n) ≥ 0 for all
n ≥ 0. Define g(n) to be the first element in the set {fs(n)|s ∈ S} for n ≥ 0.
Put g(n) = −g(−n)) for n < 0. Then g represents a greatest lower bound for
S.
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Definition 1 Quasi-homomorphism

A function f : Z −→ Z is called a quasi-homomorphism (qhm) when ∃k ∈ N
such that ∀m,n ∈Z:

|f(n + m) − f(n) − f(m)| ≤ k.

When k is 0, f is a homomorphism. In general, k is called the additivity
constant.

Definition 2 Equivalent quasi-homomorphisms

Two quasi-homomorphism f and g are called equivalent, denoted by f ∼ g, if
∃k ∈ N such that ∀n ∈ N :

|f(n) − g(n)| ≤ k.

Theorem 1

The above equivalence property is an equivalence relation and so partitions the
set of quasi-homomorphisms into disjoint equivalence classes.

Proof:

(Symmetry) If |f(n) − g(n)| ≤ k, then |g(n) − f(n)| = | − (f(n) − g(n))| =
|f(n) − g(n)| ≤ k.

(Reflexivity) |f(n) − f(n)| = 0 ≤ k.

(Transitivity) If |f(n) − g(n)| ≤ k1 ∈ N and |g(n) − h(n)| ≤ k2 ∈ N then
|f(n) − h(n)| = |f(n) − g(n) + g(n) − h(n)| ≤ k1 + k2, by the triangle
inequality.

The set of qhms equivalent to f is denoted by [f ].
Define addition of two quasi-homomorphisms f and g by point-wise addition:

(f + g)(n) = f(n) + g(n). To see that f + g is a qhm note that since f , g are
qhms:

|f(m + n) − f(m) − f(n)| ≤ k1

|g(m + n) − g(m) − g(n)| ≤ k2

Applying the triangle inequality:

|f(m + n) − f(m) − f(n) + g(m + n) − g(m) − g(n)| ≤ k1 + k2

|f(m + n) + g(m + n) − f(m) − g(m) − f(n) − g(n)| ≤ k1 + k2

|(f + g)(m + n) − (f + g)(m) − (f + g)(n)| ≤ k1 + k2

Define multiplication of two quasi-homomorphisms f and g by function com-
position: (fg)(n) = f(g(n)).

To show that (fg) is a qhm firstly define:

df (m,n) = f(m + n) − f(m) − f(n)
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f(g(m + n)) − f(g(m)) − f(g(n)) = f(g(m) + g(n) + dg(m,n)) − f(g(m)) − f(g(n))

= f(g(n) + dg(m,n))

+ df (g(m), (g(n) + dg(m,n)) − f(g(n))

= f(dg(m,n)) + df (g(n), dg(m,n)) + df (g(m), g(n) + dg(m,n))

Note that df and dg are bounded, and the function f is bounded over a
finite domain.

Definition 3 The set of efficient real numbers

The set of all qhms, factored out by equivalence, is R. That is,

R = {[f ] | f a qhm}.

Definition 4 Positive

A qhm f is called positive if ∃a ∈ Z such that ∀n ∈ N f(n) ≥ a. Let P denote
the set of [f ] in R with f positive.

Definition 5 Negative

Similarly, a qhm f is called negative if ∃b ∈ Z such that ∀n ∈ N f(n) ≤ b.

Definition 6 Bounded

A qhm f is called bounded if |f(n)| ≤ k, for some k ∈ N .

Theorem 2 Suppose that f is a qhm with f(0) = 0, additivity constant k and
∃n ∈ N such that f(n) > k. Then ∀n ∈ N f(n) ≥ −k.

Proof: Let r ∈ N be the smallest natural number such that f(r) > k. Assume
∃s ∈ N such that f(s) < −k. Since f(0) = 0, both r and s are strictly
positive; also r 6= s.

If r > s then 0 < r − s < r, so the minimality of r implies f(r − s) ≤ k,
but then:

f(r) − f(r − s) − f(s) > k − k + k = k

Similarly, if s > r then 0 < s − r < s, so the minimality of s implies
f(s − r) ≥ −k, but then:

f(s) − f(s − r) − f(r) < −k + k − k = −k

Both cases contradict the assumption that f has additivity constant k.
Hence, the assumption concerning the existence of s must be false and so
∀n ∈ N f(n) ≥ −k.
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Corollary 3 Every qhm is either positive or negative.

Proof: Suppose instead that f is a qhm that is neither positive nor negative.
Then ∃n1 ∈ N and ∃n2 ∈ N such that f(n1) > k and f(n2) < −k. This,
however, contradicts Theorem 2 so all qhms must be either positive or
negative.

Let f : N −→ Z be a qhm. Then the extension f̄ : Z −→ Z of f , defined by:

f̄(n) =

{

f(n), for n ≥ 0
−f(−n). for n < 0

is a qhm having the same additivity constant as f and satisfying

f̄(−n) = −f̄(n)

for all integers n. Every qhm is equivalent to the extension of its restriction to N .

This means that when constructing a qhm it is sufficient to define f(n) for
n ∈ N and to check the qhm property on the restricted domain.

Theorem 4 Suppose that f : Z −→ Z is a qhm with additivity constant k.
Then for all m,n ∈ Z |f(mn) − mf(n)| ≤ (|m| + 1)k.

Proof: The proof is by induction on m, with n fixed. When m = 0 |f(0)| ≤ k,
as |f(0+0)−f(0)−f(0)| ≤ k. Note also that when m = 1, |f(n)−f(n)| =
0 ≤ k.

Assume the result is true for some m ≥ 1:

|f(mn) − mf(n)| ≤ |m + 1|k (2)

Furthermore, f is a qhm and so:

|f(mn + n) − f(mn) − f(n)| ≤ k

Adding the above the equation and also (2) and applying the triangle
inequality:

|f((m + 1)n) − (m + 1)f(n)| ≤ (|m + 1| + 1)k

To show that the result is true for negative m note that:

|f(mn) − f((m − 1)n) − f(n)| ≤ k
|f((m − 1)n) + f(n) − f(mn)| ≤ k

Again, adding this inequality to (2) and applying the triangle inequality:
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|f((m − 1)n) − (m − 1)f(n)| ≤ (|m − 1| + 1)k

So the result is true for all m ∈ Z.

Theorem 5 Every qhm f : Z −→ Z is equivalent to one with additivity constant
1.

Proof [A’C]:

For p, q ∈ Z with q 6= 0, write < p : q > for a choice of integer satisfying:

| < p : q > −p
q
| ≤ 1

2

For any qhm f : Z −→ Z with additivity constant k ≥ 1, define f ′ :
Z −→ Z by:

f ′(n) =< f(3k) : 3k >

Using Theorem 4, note that:

|f ′(n) − f(n)| ≤ |f ′(n) −
f(3k)

3k
| + |

f(3kn)

3k
− f(n)|

≤
1

2
+ k +

1

3

≤ k +
5

6

So f and f ′ are equivalent.

Furthermore:

|f ′(m + n) − f ′(m) − f ′(n)| ≤ |f ′(m + n) −
f(3k(m + n))

3k
| + |

f(3km)

3k
− f ′(m)|

+ |
f(3kn)

3k
− f ′(n)| + |

f(3k(m + n))

3k
−

f(3km)

3k
−

f(3kn)

3k
|

≤
1

2
+

1

2
+

1

2
+

k

3k

=
11

6
< 2.

Theorem 6 Suppose that f : Z −→ Z is a qhm. Then ∃a ∈ N such that
∀n ∈ Z f(n) ≤ a|n| + k.

Proof: Letting n = 1 in Theorem 4

|f(m) − mf(1)| ≤ (|m| + 1)k

Applying the triangle inequality:
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|f(m)| ≤ (|m| + 1)k + |mf(1)| = |m|(k + |f(1)|) + k

It is sufficent to choose a = k + |f(1)|.

Theorem 7 Suppose that f : Z −→ Z is a qhm with additivity constant k.
Then for all m, n ∈ Z |nf(m) − mf(n)| ≤ (|m| + |n| + 2)k.

Proof: From Theorem 4:

|f(mn) − mf(n)| ≤ (|n| + 1)k

By symmetry:

|f(nm) − nf(m)| = |nf(m) − f(nm)| ≤ (|m| + 1)k

Adding these two inequalities and applying the triangle inequality:

|nf(m) − mf(n)| ≤ k(|m| + |n| + 2)

The following two easy Lemmas are to aid the proof that multiplicative
inverses exist in R.

Lemma 8 Suppose that f : Z −→ Z is a qhm with additivity constant k. Sup-
pose further that M ∈ N is constant. Then ∀n ∈ Z |f(n + M) − f(n)| ≤
k + |f(M)|.

This result follows immediately from the triangle inequality and the qhm
property.

Lemma 9 Suppose that f : Z −→ Z is a qhm with additivity constant k ∈ N .
Suppose m,n, p ∈ Z. Then |f(m + n + p) − f(m) − f(n) − f(p)| ≤ 2k.

Proof: Since f is a qhm:
|f(n + p) − f(n) − f(p)| ≤ k
|f(m + n + p) − f(m) − f(n + p)| ≤ k
Adding these equations and applying the triangle inequality:
|f(m + n + p) − f(m) − f(n) − f(p)| ≤ 2k.

Theorem 10 R satisfies the following field axioms:

1. (Additive associativity) ([f ] + [g]) + [h] = [f ] + ([g] + [h]).

Proof: For any f ∈ [f ], g ∈ [g], h ∈ [h]:

|((f + g) + h)(n) − (f + (g + h))(n)|

= |(f + g)(n) + h(n) − f(n) − (g + h)(n))|

= |f(n) + g(n) + h(n) − f(n) − g(n) − h(n)|

= 0
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2. (Additive identity) ∃[0] ∈ R such that [f ] + [0] = [f ] for all [f ] ∈ R.

Proof: Let 0(n) = 0 ∀n ∈ N , this defines a homomorphism 0.
Also for any f ∈ [f ]: |(f + 0)(n) − f(n)| = |f(n) + 0(n) − f(n)| = 0

Note that [0] is the equivalence class of all bounded functions
Z −→ Z.

3. (Additive inverse) For each [f ] ∈ R there is a [g] ∈ R such that [f ]+ [g] =
[0].

Proof: For f ∈ [f ], define g(n) = −f(n) for all n.
now consider:
|(f + g)(n) − 0(n)| = |f(n) + g(n) − 0| = 0

4. (Multiplicative commutativity) [f ][g] = [g][f ].

Proof: The aim is not to show that f(g(n)) = g(f(n)), but |f(g(n)) −
g(f(n))| ≤ k, that is, fg and gf are in the same equivalence class.
Setting m = g(n) in Theorem 4, and then applying Theorem 6:

|nf(g(n)) − g(n)f(n)| ≤ (g(n) + n)k1 ≤ nk2

Changing the roles of f and g:

|ng(f(n)) − f(n)g(n)| = |f(n)g(n) − ng(f(n))| ≤ nk3

Applying the triangle inequality:

|nf(g(n)) − ng(f(n))| ≤ |nf(g(n)) − g(n)f(n)| + |f(n)g(n) − ng(f(n))|

≤ nk2 + nk3 ≤ nk4

|f(g(n)) − g(f(n))| ≤ k4

5. (Multiplicative associativity) ([f ][g])[h] = [f ]([g][h]).

Proof: For f ∈ [f ], g ∈ [g], h ∈ [h]:
|(fg)((h(n)) − f((gh)(n))| = |f(g(h(n)) − f(g(h(n)))| = 0.

6. (Multiplicative identity) ∃[1] ∈ R such that [1] 6= 0 and [f ][1] = [f ] for all
[f ] ∈ R.

Proof: Define 1(n) = n. Then |f1(n) − f(n)| = |f(1(n)) − f(n)| =
|f(n) − f(n)| = 0 ≤ k.

7. (Multiplicative inverse) For each [f ] in R different from [0] there ∃[g] ∈ R
such that [f ][g] = [1].

Proof: Consider firstly a positive qhm f : N −→ N ∈ [f ]. Define:
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g(n) = min{m ∈ N |f(m) ≥ n}

So that:

f(g(n)) − 1(n) = f(g(n)) − n

≥ 0

Since f is a qhm:

f(g(n)) − f(g(n) − 1) − f(1) ≤ k

Note that f(g(n) − 1) < n so:

f(g(n)) − n ≤ k + f(1)

The following proof that g is a qhm is essentially that of Arthan [Ar].
Suppose that m, n ∈ N . From the definition of g:

f(g(m + n)) ≥ m + n > f(g(m + n) − 1) (3)

f(g(m)) ≥ m > f(g(m) − 1) (4)

f(g(n)) ≥ n > f(g(n) − 1) (5)

Subtracting (4), (5) from (3) we obtain:

f(g(m + n)) − f(g(m) − 1) − f(g(n) − 1) > 0

f(g(m + n)) − f(g(m)) + f(g(m)) − f(g(m) − 1) − f(g(n)) +
f(g(n)) − f(g(n) − 1) > 0

From Lemma 8:

|f(g(m)) − f(g(m) − 1)| ≤ k + f(1)

and

|f(g(n)) − f(g(n) − 1)| ≤ k + f(1)

Together the last three equations imply that:

f(g(m + n)) − f(g(m)) − f(g(n)) > k1

Similarly one may show that:

f(g(m + n)) − f(g(m)) − f(g(n)) < k2

Applying Theorem 7 and the triangle inequality:

|f(g(m + n) − g(m) − g(n))| ≤ k + |f(g(m + n)) − f(g(m)) − f(g(n))|

≤ k3
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For |f(g(m + n) − g(m) − g(n))| to be always bounded |g(m + n) −
g(m) − g(n)| must always be bounded, so g is a qhm.

The extension of g can be used to obtain a multiplicative inverse
defined on Z.

When [f ] is negative, first find its positive associative inverse [−f ].
Secondly find the multiplicative inverse [−g] of [−f ]. Then find the
associative inverse [g] of [−g], which is a multiplicative inverse for [f ].

8. (Distributive law) (i)([f ] + [g])[h] = [f ][h] + [g][h] and (ii)[f ]([g] + [h]) =
[f ][g] + [f ][h].

Proof: In fact, (f + g) ◦ h = f ◦ h + g ◦ h, so (i) follows. Then (ii) follows
by multiplicative commutativity.

Definition 7 [f ] ≥ [g]

[f ] ≥ [g] iff f − g is positive.

Theorem 11 R satisfies the following order axioms:

1. (Additive Closure) ([f ], [g] ∈ P ) =⇒ [f ] + [g] ∈ P.

Proof: Let f ∈ [f ] and g ∈ [g]. Since [f ], [g] are positive ∃a1, a2 ∈ N
such that ∀n ∈ N :
f(n) > a1,
g(n) > a2. Now consider:
f(n) + g(n) > a1 + a2

(f + g)(n) > a1 + a2 = a3 ∈ N

i.e. f + g ∈ P

2. (Multiplicative Closure) ([f ], [g] ∈ P ) =⇒ [f ][g] ∈ P.

Proof: Since [f ] is positive ∃a1 ∈ N such that ∀n ∈ N :
f(n) > a1.
In particular ∀n ∈ N if g(n) ∈ N : f(g(n)) > a1 so that fg is positive.

3. (Exclusivity) ([f ] ∈ P ) =⇒ [−f ] /∈ P.

Proof: Let f ∈ [f ]. Then ∃a ∈ Z such that ∀n ∈ Nf(n) > a. This implies
that: −f(n) < −a.
(−f)(n) < −a.
So that [−f ] is negative.

4. (Trichotomy law) ([f ] ∈ R) =⇒ ([f ] = [0]) or ([f ] ∈ P ) or ([−f ] ∈ P ).

Proof: This is proved in Theorem 3.
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Theorem 12 Every nonempty set S ⊆ R which has a lower bound has a great-
est lower bound.

Proof: Without loss of generality we can suppose that 0 is a lower bound for
S so that S consists of positive elements. The least upper bound can be
constructed in the following way. For each s ∈ S, choose fs representing
s with additivity constant 1 and such that ∀n ∈ N fs(n) ≥ 0. Define:

g(n) = min{fs(n)|s ∈ S}

= fsn
(n)

for an appropriate sn ∈ S.
So that:

g(n) = fsn
(n) ≤ fs(n) for all s ∈ S.

Now we show that g is a qhm :

g(m + n) − g(m) − g(n) ≤ fsm+n
(m + n) − fsm

(m) − fsn
(n)

≤ fsm+m
(m + n) − fsm+n

(m) − fsm+n
(n)

≤ 1

Assume that fsn
≥ fsm

. Then fsn
(r)− fsm

(r) ≥ −2 from Theorem 2. So:

g(m + n) − g(m) − g(n) = fsm+n
(m + n) − fsm

(m) − fsn
(n)

≤ fsm+n
(m) − fsm

(m) + (−fsm
(n) + fsm

(n)) − fsn
(n)

≤ (fsm+n
(m) − fsm

(m) − fsm
(n)) + (fsm

(n) − fsn
(n))

= 1 + 2 = 3

Now suppose that h is a lower bound. Then ∃a ∈ N such that ∀s ∈ S and
∀n ∈ N :

h(n) ≤ fs(n) − a

≤ min{fs(n)|s ∈ S} − a

= g(n) − a

This implies that h ≤ g and so g is the greatest lower bound.

R is a complete ordered field and so must be isomorphic to the usual ordered
field of real numbers.
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